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ABSTRACT 

n particles (beads) of different masses are mounted at equally spaced points 
along a string which in itself is weightless, of unit tension and fixed at its 
endpoints. Given the set of masses, it is shown that the principal frequency 
of this loaded string becomes minimal if they are arranged decreasing from 
the center in as nearly a symmetrical order as possible. If a strictly symme- 
trical increasing arrangement of the masses exists, then this arrangement 
gives the maximum of the principal frequency. 

1. Introduction. In a paper by P. R. Beesack and the author [1] differential 
systems corresponding to strings with continuous, but nonhomogeneous, density 
p(x) were considered. Setting the constant tension of the string equal to 1 and 
fixing it at its endpoints x --- 0 and x = L, the square of  the principal frequency 

is the least characteristic value 21 = 2x(p) of 

(1.1) y"(x) + 2p(x)y(x)=O, y(O)= y(L)=O; (p(x)>O, O< x< L). 

Together with the given density p(x) all densities equimeasurable to it in [0, L] 
were considered. It was proved that among all strings of  such a class the least 
principal frequency occurs in the case that the density is symmetrically decreasing 
about the midpoint of  the string and the maximum principal frequency occurs 
when the density is symmetrically increasing. These extremizing densities, the 
symmetrically decreasing and increasing rearrangement of  p(x), were denoted by 
p-(x) and p+(x) respectively. The result just described was hence formulated as 

(1.2) 21(P-) < 2t(p) <_- 2t (p+) ,  

[1, Theorem 2] and it is easily seen that the corresponding equality holds only if 

p = p -  or p = p+, respectively [See 8, Theorem 1]. 
In the present paper we consider the analogous question for the discrete case. 

n particles (beads) of different masses are mounted at equally spaced points along 

a string,which in itself is weightless and of  unit tension. The string is again fixed at 

Received January 17, 1963 (Revised April 28, 1963) 
* Sponsored by the Mathematics Research Center, United States Army under Contract No. 

DA-11--022-ORD-2059, University of Wisconsin, Madison. 

11 
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its endpoints x = 0 and x - L and the mass rni is attached at x i = i L / ( n  + 1), 
i =  1 .. . .  , n. Let y~ be the amplitude of  the ith particle for a harmonic oscillation 
of  this loaded string. The column vector y = (Yl .. . .  , y,) satisfies 

(1.3) A2y = 2Py, 

where A2 = A2~")is the Jacobi (tri-diagonal) matrix of order n: 

(1.4) A~2 ") = A2 = 

f 
2 - 1  

- 1  2 - 1  

- 1  2 - 1  
- 1  2 

2 is the square of  the frequency, and 

(1.5) P = {Pl . . . . .  P,} 

is the diagonal matrix of order n whose elements are p~ = miL/ (n  + 1) i = 1,..., n 

I-4, Chapter III, and 6, Chapter 3]. (As in future only the pi's and not the mi's 
appear, we shall refer to Pi as the mass of the ith bead). The square of the principal 
frequency is the least characteristic value 21 = 21(P ) of the pencil A -  2P; i.e. 21(P) 
is the smallest root of the characteristic equation ]A - 2P] = 0. 

Our problem is the following: Given a set of  beads, how are they to be arranged 
at the equidistant points x~ in order to extremize 21 ? In contradistinction to the 
continuous case, there exists in general no arrangement which is strictly symmet- 
rical with regard to the midpoint x = L / 2 of  the string. Nevertheless, the analogue 
o f 2 1 ( p -  ) < 21(p ) holds in the following sense: if the beads are arranged in as 
nearly symmetrically decreasing order as possible, with the inevitable over- 
weight given at each step to one and the same side, then 21 takes its least possible 
value.This is essentially Theorem 1 of  §3; however, we formulate this result in a 
slightly more general way by replacing A 2 by A k (see (2.6)). 

This theorem is the main result of  our paper. §2 contains the necessary definitions 
and two lemmas. Lemma 2 is of  special importance for the proof  of Theorem 1. 
Its first part follows from a theorem of Hardy, Littlewood and P61ya 1-5, Theorem 
371] ; its second part, needed for a uniqueness statement in Theorem 1, seems to be 

new. Both parts of  this lemma follow from a result on rearrangements proved 
by A. Lehman [7]. 

In §4 an inequality corresponding to 21(p) < 21(p +) is established but only 
for the case where a stricly symmetrically increasing arrangement of  the beads 
exists. 



(2.3) 

or 

(2.4) 
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2. Definitions, notation and two lemmas. We start with the following definitions 
which are slightly different from those used in the book of Hardy, Littlewood, 
and P61ya [5, Chapter X]. 

An ordered set ( a ) =  (al . . . .  ,an) of n real numbers is called symmetrically 

decreasing if either 

(2.1) al  < an < a2 ~ an-1 < ... < a[(n+2)/2] 

o1" 

(2.2) an < al < a n - 1  ~ a 2  <= . . .  ~ at(n+l)/21 

holds. The set (a) is symmetrically increasing if  either 

at > an > a2 > an-1 > ... > a[(n+2)/21 

an ~ a l  > a n _  1 ~ a 2  ~ . . .  ~ a[(n+l)/2] 

holds. The set (a) is strictly symmetrically increasing if 

(2.5) al = an >= a 2  = an-1 > ... > (=)a[(n+ 2)/z]. 

For a given set (p) = (Pl . . . . .  Pn) there exist, in general, two distinct, symmetri- 

cally decreasing rearrangements. The rearrangement ordered as in (2.1) is 
denoted by (p- )  = (p;-, . . . ,p~) so that 

(2.1') Pl- < P~ < P ;  < P~--1 < ... --< Pt~n+2)/21 ; 

the other symmetrically decreasing rearrangement is denoted by 

( - P )  ---- ( - P l , . . . , -  P,) : 

(2.2') -Pn =< -Pl  --<- Pn-1 --< -P2 --< ... --< -Pt(n+t)/2~. 

Similarly, the symmetrically increasing rearrangements of (p) are denoted by 
(p+) and (+p) and their elements satisfy 

P > P = > P = > P 1 = . . .  = P[(n+2) /2]  (2.3') 

and 

(2.4') +p>+p>+p  > + p >  >+ 
n = 1 = n--1 = 2 -~ "'" = P [ ( n + l ) / 2 ] "  

Finally, if (p) admits a strictly symmetrically increasing rearrangement, i.e. if 
(p +) = (+p), then this rearrangement is denoted by (p*) = (p*, ..., p*): 

( 2 . 5 ' )  * - * = ----- = P n - t  >---- "'" ~ ( - - ) P [ ( n + 2 ) / 2 ] "  

Sets (p) admitting such a rearrangement (p*) are called paired. For even n a set 
(p) is paired if every value occurs an even number of times; for odd n the smallest 
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value has to occur an odd number of  times, every other value an even number 

of times. 
If  (q) = (ql . . . . .  q,) is a rearrangement of  (p) = (Pl . . . . .  p,) then we say that the 

diagonal matrix Q = (ql . . . . .  q,} is a rearrangement of the diagonal matrix 
P = {Pl, ..., P,}. Given P, its rearrangements P - ,  -P ,  P+,  +P and, if P is paired, 
P* are defined by the order relations (2.1')-(2.5') for their elements. 

Together with these diagonal matrices of order n, we consider also Jacobi 
matrices of the same order for which the elements in the diagional are equal to the 
real constant k and the elements in the super- and sub-diagonal are - 1. (All other 
elements are 0). We use the notation (cf. (1.4)) 

k - 1  
- 1  k - 1  

(2.6) A~ " )=  Ak = 

- 1  k - 1  
- 1  k 

(Ak tx) = (k ) ,  A~k 2 ) =  ..). For  the corresponding quadratic forms 
1 

the following two lemmas hold: 

LEMMA 1. Let 

n - - I  

(2.7) A~k")(y,y) = Ak(y,y ) = k ~ y2 _ 2 ~ YiY~+I 
/ = I  i = i  

be the quadratic form belonging to the matrix (2.6). (i) I f  k > 2cos(Tr / n + 1) then 
Ak(y , y) is positive definite; (ii) if k < 2 cos (it / n + 1) then Ak(y , y) takes negative 
values; (iii) i f  k = 2cos(~r/n + 1) then Ak(y,y ) is non-negative definite. 

This lemma is an immediate consequence of the following theorem due to Fan, 

Taussky and Todd [2, Theorem 9]. I f  yl , . . . ,  y, are n real numbers, then 

l1 

• 2 7~ ]~ 2 
( Y , -  Yi+ 1) 2 > 4sin -~n-+-]) ' ,=o y' 

i=0  

(where Yo = Y.+x = O) unless Yi = c~, where 

(2.8) Yi= s i n - - - - -  i = 1,. n. 
n + l '  "" 

LEMMA 2. Let Ak(y, y ) be defined by (2.7) and let the set (y) of n non-neoative 
numbers be given except in arrangement. Then Ak(y , y) attains its minimum if 
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(y) is arranged in symmetrically decreasing order. Moreover, if all the elements 
of (y) are positive and if no three elements of (y) have the same value, then 
Ak(Y, Y) attains its minimum only i f (y)  is symmetrically decreasing. 

In our notation, this can be stated as 

(2.9) Ak(y, y) > Ak(y-,  y- ), y, > O, i = 1,..., n, 

with the additional statement that, if Yi > 0, i = 1, ..., n and if no three numbers 

Yi are equal, then equality holds in (2.9) only if (y) = ( y - )  or (y) = (-  y). 
We remark that n 2 ~i=xYi is invariant for all rearrangements of a given set. 

Defining 

(2.10) S(y,y) : ~ y2+ ~ YiY,+I, 
i=1 i = I  

it follows that (2.9) is equivalent to 

(2.11) S(y,y) < S ( y - , y - ) .  

This last inequality is a very special ease of  a Theorem of  Hardy, Littlewood 
and P61ya on bilinear forms. [5, Theorem 371; to obtain (2.11) set, in their 
notation, c o = 1, c 1 = c_ 1 = ½, all other c = 0; let their two sets (x) and (y) 
coincide and if (our) n is even, let one element of  (y) be zero.] This proves the 
first part of Lemma 2. As mentioned, both parts of  the lemma follow from 
Lehman's  result. Indeed, if we apply the corollary of [7] to the funet ionf(x)  = x 2 
we obtain that 

n - 1  

~ YiYi+l, yi>=O, i = l , . . ' n ,  
i=1 

is maximum if (y) is symmetrically decreasing and that under the more restrictive 
assumptions on (y) this maximum is attained only if (y) is symmetrically de- 
creasing. This is clearly equivalent to Lemma 2. 

3. The minimum of the least characteristic value. 

THEOREM 1. Let Ark")= A k be the Jacobi matrix of order n defined by (2.6) 
and let Q = {ql .... ,q,),  qi > O, i=  1 . . . .  ,n be any diagonal matrix of order n 
with positive elements. Denote the least characteristic value of the pencil 
A k -  2Q by 2t(Q). Let P = {Pl . . . .  ,P,}, P i >  O, i = 1 .... ,n be a given diagonal 
matrix and let P -  and P + be its symmetrically decreasing and increasing 
rearrangement respectively. 

if 
7[ 

(i) k > 2 cos 
n '+ 1' 
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then 

(3.1) 2x(P) _>_ 2~(P-).  

Moreover, if 

7~ 
(i') 2 > k > 2 c o s - - - - ~ ,  

= n - t -  

then equality holds in (3.1) only if P itself is symmetrically decreasing. 

if  
7g 

(ii) k < 2 cos - - - - -  
n + l '  

then 

(3.2)  2~(P) > 21(P + ). 

Finally, if 

7~ 
(iii) k = 2 cos ~ -  

n + l '  

then 

(3.3) 2a(Q) = 0 

for any diagonal matrix Q = {ql . . . . .  qn}, qi > O, i = 1 ..... n. 

Proof. For  given n and k let y = (Yl . . . . .  Yn) be the characteristic (principal) 
column vector corresponding to the least characteristic value 2~(P) of the pencil 

A k - -  2P[3,  p. 310]. Let l y l  = (I yt  [ . . . .  ,1 y,[) ,  then 

n n - 1  [ 2 n - 1  
Ak(y,y)= k ~ y ~ -  2 ]E y i Y i + l  > = k  E l y  / - 2 ] E  lyillyi+xl= Ak(lyl, lyl), 

i = l  i = l  i = l  i = 1  

and 

P(y,y)= ~ piy~= ~ p, Iy, I =P(lYI,lYl). 
i = l  i = l  

It now follows from the minimum characterization of 2x(P) [3, p. 319] that [y[ is 
also a characteristic vector corresponding to 2t(P). But the recursive form of the n 
scalar equations of 

(3.4) Aky = 21(P)Py 

shows that the characteristic vector belonging to 21(P) is determined to within a 
scalar factor. We may therefore assume y = l yl and it follows from (3.4) that 
y > 0, i.e. y~ > 0 for all i, i = 1 . . . . .  n. ['Cf. 4, p. 136]. 
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Assume now that (i) holds. By Lemma 1, Ak(y, y) is in this case positive definite, 
hence 21(P) > 0. Let y be the positive characteristic vector belonging to 21(P) 
Then 

(3.5) • A k ( x , x )  = 0 ) .  21(p ) = Ak(y,y__)_ > A k ( Y - , Y - )  > min P-(x,x'-----~) 
P(Y, Y) = P - ( Y - , Y -  ) = :,,o 

Here y -  = (YT, ..., Y~) is the symmetrically decreasing rearrangement of y: 

(3.6) (0 <)y~- < y~ < Y2 < Y~-I < ... < Y[(n+2)/2]" 

(3.6) and (2.1') show that y-  and P-  are similarly ordered and it follows by a 
well-known theorem of Hardy, Litttewood and P61ya [5, Theorem 368] that 

(3.7) p ( y , y )  = ~ piy2 < ~ p.i-y.[-2 = p - ( y - , y - ) .  
i=1 /=1 

(3.7) and the first part of Lemma 2 (i.e. (2.9)) imply the first inequality sign of 
(3.5). The minimum in the fourth term of (3.5) is taken over the class of all not 
identically vanishing vectors x, and y - ( >  0) clearly belongs to this class. By the 
minimum characterization of the least characteristic value, this minimum is 
~l(P-) .  This proves (3.5) and hence also (3.1). 

For the next assertion of the theorem we have to apply the second part of 
Lemma 2. We already know that, for any k, the characteristic vector y corres- 
ponding to 2t(P) can be chosen in such a way that all its components y,, i = 1 .... , n 
are positive. It remains to be shown that, if (i') holds, then no three components 
Yi have the same value. But in this case (3.4)implies (as 2~(P)> 0, Pi > O, 

Yi > O, i = 1, . . . ,n) 

(3.8) Aty  > 0 

or, explicitly, 

(3.9) k y i > y i _ l + y i + l ,  y t > 0 ,  i = l , . . . , n ,  (Yo=Yn+x=0).  

(3.9) and (i') give 

(3.10) 2Yi > Yi-1 + Yi+l,  y~> O, i = 1, . . . ,n,  (Yo = Y,,+I = 0). 

i.e. y > 0 is strictly concave. This strict concavity implies that no three com- 
ponents y~ can have the same value and y thus fulfills the conditions required for 
the second part of Lemma 2. 

Let k now be restricted to the range given by (i') and assume that equality 

holdsin (3.1), i.e. 

(3.11) 2x(P) = 2i(P-) .  
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The inequality signs in (3.5) thus become equality signs. As the minimum in the 
fourth term of (3.5) is obtained only for the characteristic vector of Ak -- 2P-  it 
follows that y -  is this vector: 

(3.12) Aky-  = 2t(P-)P y . 

Equality of the first two ratios of (3.5)implies (by (3.7) and the first part of Lemma 
2, i.e. (2.9)) Ak(y, y) = At,(y- , y - ) .  
Lemma 2 that either 

(3.13) 

or 

(3.14) 

Here 

It thus follows from the second part of 

y = y -  

y ~ - - y .  

-y  = (-y~, . . . , -y ,)  is the other symmetrically decreasing rearrangement 
of y, satisfying 

(3.15) (0 <)  -y,, < - Y l  < -Y,,-x < -Y2 < ... <= -Yan+x)/2l. 

(3.4), (3.11), (3.12) (3.13) imply P = P- .  (2.1'),(2.2') and (3.6),(3.15) imply that 
-Pi = P,-+ 1-i and -Yi = Y ~ l - i ,  i = 1, ...,n. (3.12) gives thus 

(3.16) A k - y  = 2x(P-) -P -Y. 

(3.4), (3.11), (3.14) and (3.16) imply P = -P. Hence, if (i') holds, equality in 
(3.1) implies that P is symmetrically decreasing. 

The proof of (3.2) is analogous to the proof of (3.1). If (ii) holds, then (by 
Lemma 1) Ak(y, y) takes negative values and 21(P ) is thus negative. (3.5) is thus 
replaced by 

• Ak(X,X) (3.17) (0 >)21(P)= Ak(Y'Y) > A k ( y - , y - )  > mln o--¥~,---= 21(p+), 
P(Y,Y) = P + ( Y - , Y - )  = ~,~o P (x ,x)  

which follows by (2.9) and 

n 

(3.18) p(y ,y )  = ]Elp,y ~ >= ~, p+ y ;2  = p + ( y - , y - ) .  
i = ~  5 = 1  

(3.18) follows by I'5, Theorem 368] as y-  and P+ are oppositely ordered. 
Finally, if (iii) holds, ~ defined by (2.8), is clearly the characteristic vector 

corresponding to 21(Q) = 0 for any Q = {qa, --., q,}, qi > 0. 
This completes the proof of the theorem. 
For k = 2 we gave the mechanical interpretation of this theorem in the intro- 

duction. For k > 2 the n beads should be connected by springs of equal strength 
(proportional to k - 2) to the line y = 0 [-See 4, p. 269 for the analogous conti- 
nuous case]. In the critical case k = 2cos(n/n  + 1) the "negative" springs 
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and the tension of the string result in a static equilibrium displacement whose 
shape (Yi = c sin (in / n + 1)) is independent of the masses. 

4. The max imum of the least  characteristic value for k = 2 and paired P. W e  now 
restrict ourselves to the case k = 2. It follows that the least characteristic value 
21(Q) of A 2 -  2Q, ( Q =  {ql . . . .  ,q,},  qt > 0 ,  i =  1, . . . ,n) is positive. For the 
continuous string the proof of 21(p +) > 21(p) was simpler than the proof of 
21(p) > 21(p-). For n = 3 (and k = 2) an easy computation shows that 
21(P +) > 21(P). But already for n = 4 this inequality is, in general, not valid. 

Indeed, for P = {Pt, P2, P3, P4} we obtain, 

~(~,) = [A (4) _ ;~P[ 

= 5 - 2~(2pl + 3p 2 + 3p3 + 2p4) 
(4.1) 

+ 22[3(piP2 + PIP4 + P3P4) + 4(piP3 + P2P3 + P2P4)] 

- 223(PlP2P3 + PlP2P4 + PlPaP~ + P2P3P4) + 24PlP2PaP4. 

Note that only the coefficients of 2 and 22 depend on the arrangement of P. 
Denote the four masses by a, b, c and d and assume that 

(4.2) 0 <  a < b < c < d.  

Let 

(4.3) P = {d,a,b,c}. 

Its symmetrically increasing rearrangement P+ is then given by 

(4.4) P+ = {d, b, a,c}. 

Computing (4.1) for P and P ÷ and subtracting we obtain (using an obvious 
notation) 

(4.5) q~(2)- ~b+(2)= (b - a ) ( d -  c)22. 

(4.2) and (4.5) imply 21(P) > ;tl(P+). 
Comparing ~b(2) of P (given by (4.3)) with the characteristic functions of all its 

rearrangements it can be shown that the maximum 2t corresponds to (4.3). But 
we did not succeed in finding the maximizing arrangement for n > 4 and general 
P. Indeed, it may well be that no such general maximizing arrangement exists 
and that the order relations defining the maximizing arrangement vary with the 
set of masses. However, for paired sets of  masses the analogue of 21(p +) > 21(p) 
is valid. 

THEOREM 2. Let A~z n) = A 2 be the Jacobi matrix  of order n defined by (1.4). 
Let the diagonal matrix  P =  {Pl . . . .  ,pn}, p i > 0 ,  i = 1, . . . ,n be paired and 
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let P* = {p* . . . . .  p*} be its strictly symmetrically increasing rearrangement. 
Denote the least characteristic value of A 2 - A P  and A 2 - 2 P *  by 2~(P) and 
21(P* ) respectively. Then 

(4.6) 2t(P*) > 2~(P) 

and equality holds only i f  P = P*. 

Proof. Let y > 0 be the characteristic vector of A2 - ,~P* belonging to 2~(P*). 
Hence, 

(4.7) A2y = 2x(P*)P*y. 

By (2.5) P* is "symmetric" in the sense that 

(4.8) p * =  * P n + l - i ,  i = 1 , . . . , n .  

The characteristic vector y is determined to within a scalar factor and does not 
change signs. (4.7) and (4.8) imply therefore that 

(4.9) Yi = Y,+l-i ,  i = 1, . . . ,n.  

This symmetry of y and its previous established concavity (3.10) imply that y is 
strictly symmetrically decreasing, i.e. 

(4.10) (0 <)Yl = Y. < Y2 = Y.-1 < ... Y[(n+2)/2]. 

(4.10) and (2.5') show that y and P* are oppositely ordered. Theorem 368 of [5] 
gives 

(4.11) P*(Y,Y) = ~ P'Y? < ~ PiY~ = P(Y,Y). 
i = 1  /=X 

Using (4.11) we obtain 

(4.12) 21(P*) = A2(Y,Y____~) > A2(y,Y) > minA2(x,x) = ;q(p) (>  0). 
P*(y,y)  = e ( y , y )  - x~o e ( x , x )  

This proves (4.6). If 

(4.13) 21(P*) = 21(P), 

then the inequality signs in (4.12) become equality signs. As the minimum in the 
fourth term is obtained only for the characteristic vector of A2 - 2P it follows 
that y is this vector: 

(4.14) A2y = 2x(P)Py. 

(4.7), (4.13) and (4.14) give P = P*. This completes the proof of the theorem. 
We remark that Theorem 2 remains clearly correct if A~ ") is replaced by A~ ") 

where k satisfies condition (i') of Theorem 1. 
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